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Automatic Brain Segmentation for PET/MR
Dual-Modal Images Through a
Cross-Fusion Mechanism
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Ab: The precise of brain re-  structural dual-modality information for positron emission
gions and tissues is usually a prereqmsxle for the detection  tomography/magnetic resonance (PET/MR) images, we pro-
and i is of various gl in neu- pose a nove| 3D whole-brain segmentation network with

idering the of i and a to obtain 45 brain
regions. ifil the network p PET and MR

Received 7 May 2024; revised 26 July 2024 and 18 November
2024; accepted 5 December 2024, Date of publication 12 December
2024; date of current version 7 March 2025. This work was sup:
ported in part by the National Key Research and Development Pro
gram of China under Grant 2023YFF0716000, in part by the Na
tional Natural Science Foundation of China under Grant 12326607
Grant 82372038, Grant 62101540 and Grant 62471461, in part by the

Excellent Innovation Talent Training Project of
China under Grant RCJC20200714114436080, in part by the Natu
ral Science Foundation of Guangdong Province in China under Grant
2023B1515120007, in part by the Shenzhen Medical Research Funds
of China under Grant B2301002, in part by the Key Laboratory for Mag-
netic Resonance and Multimodality Imaging of Guangdong Province
under Grant 202381212060052, in part by the Shenzhen Science and
Technology Program under Grant JCYJ20220818101804009 and Grant
JCYJ20240813155913017, and in part by the Shenzhen-Hong Kong-
Macao Science and Technology Plan Project (Category C Project) under
Shenzhen Municipal Science and Technology Innovation Commission

images simultaneously, employing UX-Net and a cross-
fusion block for feature extraction and fusion in the en-
coder. We test our method by comparing it with other
deep learning-based methods, including 3DUXNET, Swin-
UNETR, UNETR, nnFormer, UNet3D, NestedUNet, ResUNet,
and VNet. The experimental results demonstrate that the

method i better perfor-
mance in terms of both visual and quantitative evaluation
metrics and achieves more precise segmentation in three
views while preserving fine details. In particular, the pro-
posed method achieves superior quantitative results, with
a Dice coefficient of 85.73% + 0.01%, a Jaccard index of

76.68% + 0.02%, a sensitivity of 85.00% + 0.01%, a preci-

sion of 83.26% =+ 0.03% and a Hausdorff distance (HD) of

4.4885 + 14.85%. Moreover, the distribution and correlation
of the SUV in the volume of interest (VOI) are also evaluated
(PCC > 0.9), indicating consistency with the ground truth
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Fig. 2. Visualization of the whole-brain segmentation results shown in
axial, coronal, and sagittal views. The method indices are as follows:
(a) NestedUNet. (b) ResUNet. (c) VNet. (d) nnFormer. (e) UNETR.
(f) SWinUNETR. (g) UNet3D. (h) 3DUXNET. (i) Ours. (j) GT.
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Hi-ERMNet: Computationally Efficient Retinal Vasculature Segmentation via

Lightweight Transformer Encoders and Edge Refinement Module
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HiFormer
Swin-UNet
Trans-UNet
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UCTransNet
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62.63

12.25 61.31
17.79 49.49
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Feature Extraction 5 Diagnosis
Image Analysis
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Computer Vision
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