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Abstract

Semi-supervised learning in medical image segmentation leverages unlabeled data to
reduce annotation burdens through consistency learning. However, current methods
struggle with class imbalance and high uncertainty from pathology variations, leading to
inaccurate segmentation in 3D medical images. To address these challenges, we present
DyCON, a Dynamic Uncertainty-aware Consistency and Contrastive Learning framework
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SSL Method Volumes used in ISLES’22 Metrics

Labeled Unlabeled Dice (%)T IoU (%) HD95] ASD]
W-Net [41] 200 (100%) O 85.60 — 27.34 —
PAMSNet [11] 200 (100%) 0O 87.37 79.14 3.21 —
MT [35] 29.22 20.41 20.18 8.55
UA-MT [49] 49.20 37.21 38.20 9.64
MCEF [37] 39.79 29.83 40.67 10.65
CML [39] 46.39 35.16 37.76 4.62
DTC [24] 46.55 34.80 37.33 8.18
AC-MT [46] 10 (5%) 190 (95%) 48.64 36.53 39.71 7.13
MagicNet [7] 51.42 38.18 37.20 5.60
GALoss [2§] 53.29 40.17 31.72 4.53
BCP [3] 53.53 41.12 37.06 6.91
DyCON (Ours) 61.48 48.80 17.61 0.75
MT [35] 36.43 24.01 21.80 7.22
MCEF [37] 42.96 32.51 42.82 10.86
DTC [24] 45.19 32.80 36.24 5.10
AC-MT [406] 49.47 37.02 39.67 11.10
CML [39] 20 (10%) 180 (90%) 50.88 38.45 36.16 494
BCP [3] 57.97 44.32 30.09 4.58
MagicNet [7] 58.84 44.42 29.18 3.64
GALoss [28] 60.13 47.27 24.11 3.17
DyCON (Ours) 65.71 51.09 13.35 0.71
MT [35] 37.70 26.33 19.00 6.45
UA-MT [49] 58.00 44.96 28.99 3.13
DTC [24] 40.23 29.35 41.47 13.13
MCEF [37] 40 (20%) 160 (80%) 40.36 31.31 41.10 13.03
AC-MT [46] 5491 41.55 32.27 2.36
CML [39] 54.31 41.77 30.75 1.35
BCP [3] 60.35 46.41 29.63 3.64
DyCON (Ours) 069.11 54.74 10.58 0.52
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SSL Method Volumes used in BraTS’19 Metrics
Labeled Unlabeled Dice (%)t loU (%)t HD95] ASD]

4t 1EBraTS19%h, DyCONRIZEIHE 3D-UNet [30] 250 (100%) 0 88.23 78.81 721 1.53
NS e MT [35] 81.70 70.82 2229 736
T2 WER3D-UNet URPC [25] 74.59 63.11 13.88 372
UA-MT [49] 82.82 72.77 1129 230

DTC [24] 81.57 71.63 1573 2.56

MCF [37] 83.67 72.15 1258 3.8

BCP [3] 25 (10%) - 22500%) g3 45 73.31 1011 1.89

AC-MT [46] 83.77 73.96 1135 193

CML [39] 85.26 _ 9.08  1.83

DyCON (Ours) 87.05 77.73 741 1.14

MT [35] 83.04 72.10 985 232

URPC [25] 82.93 72.57 593 3.19

UA-MT [49] 83.61 73.98 1144 226

DTC [24] 83.43 73.56 1477 234

MCF [37] 84.85 73.61 1124 229

BCP [3] S0(20%) 200 (80%) ¢, 54 72.72 999 186

AC-MT [46] 84.63 74.39 950 211

CML [39] 86.63 — 783 145

DyCON (Ours) 88.75 80.52 633 093
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Scans used UnCL 3 ISLES-2022 BraTS-2019
LLabeled Unlabeled Dice(%)1 HD95] ASDJ] Dice(%)t HD95] ASDJ]
X X 36.43 21.80 7.22 81.70 22.29 7.36
v X 58.78 19.37 6.16 80.04 14.35 4.23
10% 90% v 0.5 60.97 16.89 5.01 83.11 12.23 3.00
v 0.8 62.23 15.18 3.42 84.12 10.1 2.31
v T 64.52 14.10 1.05 85.97 8.50 1.78
X X 37.70 19.00 6.45 83.04 9.85 2.32
v X 60.68 15.76 3.11 81.23 12.14 3.20
20% 80% v 0.5 63.15 14.51 2.13 83.68 10.03 2.74
v 0.8  66.05 12.64 1.20 85.77 8.99 1.86
v T 68.30 11.12 0.96 87.03 7.18 1.24
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FeCL Elements ISLES-2022 BraTS-2019
FT+F~ HN Entropy UnCL Dice(%)t HD95] ASD] Dice (%) HD95] ASD|
X X X X 38.24 20.16 6.35 82.68 21.53 5.89
v X X v 63.78 13.94 1.10 84.57 8.53 1.75
v v X v 64.39 13.76 1.00 85.23 8.11 1.59
v X v v 65.46 13.52 0.85 86.32 7.86 1.32
v v v v 66.07 13.34 0.75 86.97 7.46 1.16
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Metric Value

Metric Value

Scattered Lesions

70 A 65.36

MT+SupCon

Medium Lesions

64.01

601 s53.85

7.76

MT+SupCon MT+FeCL

70.71

20 A

MT+FeCL

Non-scattered Lesions

" Dice
s HD9S

51.49 4935

MT+SupCon MT+FeCL

Large Lesions

Small Lesions

82.61
| 7838 20 4 [ Dice
[ HD9S
60 - 54.77
47.77
40 A
20 A
5.40 3.87
0 -
MT+SupCon MT+FeCL MT+SupCon MT+FeCL
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import numpy as np

i rt tplotlib 1ot 1t - =GR

HHPErt MELPLOLILT.pYRIet == B + WaveRlet_GitHub/

import torch + |— models/ S=T

from torch.autograd import Variable +| | waverhet.py & FiBm

- = =

import torch.nn as nn + | F— sdm.py # Spectral-guided Domain Modulator

from torch import optim + | — fadf.py # Frequency-Adaptive Domain Fusion

import time +| '— hmpr.py # Hierarchical Mask-Prompt Refiner

from torch.optim import 1r_scheduler + — datasets/ B

import pandas as pd - L— retinal_dataset.py

import aroparce + — wtils/ B

from datasets.retinal_dataset import BinarylLoader + | F— loss.py

from utils.loss import * + | '— transforms.py

from tgdm import tgdm

import json

. —— - I 92099
from models.waveriet import SAMB ar Chanchan-Wang Update README.md
import albumentations as A
i ) B configs Initial commit: WaveRNet implementation

from albumentations.pytorch.transforms import ToTensor

from monai.metrics import MeanIol B models Initial commit: WaveRMNet implementation
B pretrained Initial commit: WaveRNet implementation
B utils Initial commit: WaveRNet implementation
O .gitignore Initial commit: WaveRNet implementation
D LICENSE Initial commit: WaveRNet implementation
D README.md Update README.md
D eval.py Initial commit: WaveRNet implementation
O requirements.txt Initial commit: WaveRNet implementation
O train.py Initial commit: WaveRNet implementation
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